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Exam - Solid State Physics 1 

Friday, 3
rd

 of November 2017 14:00-17:00 

 

This is a closed book exam. You are not allowed to bring books, notes etc. You can use a 

basic or scientific calculator, but no other electronic equipment having capabilities to display 

the course content.  

Do not forget to indicate your full name and student number on each sheet. Please write in a 

clear way! 

The exam has 5 questions with a total of 100 points plus 10 bonus points. 

This has exam has been drafted by J. Ye and verified by G. Blake 

Date: 30/10/2016                                                                           Date: 30/10/2016  

J. Ye                                                                                               G. Blake 

 

 

 

 

 

 

1) Crystal structure and diffraction (20 points) 

a. Draw all possible 2D Bravais lattices (5p). For each case specify the two lattice 

vectors 𝒂 and 𝒃 and the angle 𝜃 between them. 

b. Write down the expression of Bragg’s law (3p) and illustrate how to derive it (2p).  

c. Briefly explain the meaning of structure factor, atomic form factor and their 

influence on X-ray diffraction (5p). If the basis of a Bavais lattice comprises more 

than one atom, what will be the general trend for the diffraction pattern (showing 

more or less different spots) as the number of atoms in the basis increases (5p). 
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Solutions 

a. Bravais lattices are  

 

 

b. A set of parallel atomic planes spaced 𝑑 apart. X-rays are incident at an angle 𝜃 are 

reflected at successive layers of atoms. For any arbitrary angle 𝜃 emergent rays are 

not in phase. Diffraction (constructive interference) only occurs when the path 

difference of the ray 𝐴𝐵 + 𝐵𝐶 = 2𝑑 𝑠𝑖𝑛𝜃 is an integer number n of wavelength 𝜆. 

 

So that: 𝟐𝒅𝒔𝒊𝒏𝜽 = 𝒏𝝀, where 𝑛 – order of the diffraction, 𝜃 – Bragg angles. Bragg 

reflection occurs only for wavelength 𝜆 ≤ 2𝑑, 𝜃 = 90° in extreme case. Otherwise 

the above relation cannot be satisfied.  
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c. Structure factor is a scattering amplitude of a single cell. The structure factor is a 

particularly useful tool in the interpretation of interference patterns obtained in X-

ray, electron and neutron diffraction experiments. It is given by  

𝑆𝑮 = ∑ 𝑓𝑗𝑒𝑥𝑝(−𝑖𝑮 ⋅ 𝒓𝒋)𝑗  , (expression was not necessary here)  

where 𝑓𝑗 = ∫𝑑𝑉𝑛𝑗(𝝆)𝑒𝑥𝑝(−𝑖𝑮 ⋅ 𝝆) integrated over all space, 𝝆 = 𝒓 − 𝒓𝒋.  

(expression was not necessary here) 

 𝑓𝑗 is an atomic form factor and is a measure of the scattering amplitude of a wave 

by an isolated atom (or molecule like in case of crystalline fullerene). The atomic 

form factor depends on atom, bond and angle, thus is different for each basis atom. 

The common feature of all form factors is that they involve a Fourier transform of 

a spatial density distribution 𝑛𝑗(𝝆) of the scattering object from real space to 

momentum space. 

Additional atoms in the basis can only further reduce crystal symmetry, therefore extra 

diffraction will appear. 

  

https://en.wikipedia.org/wiki/Interference_pattern
https://en.wikipedia.org/wiki/X-ray_diffraction
https://en.wikipedia.org/wiki/X-ray_diffraction
https://en.wikipedia.org/wiki/Electron_diffraction
https://en.wikipedia.org/wiki/Neutron_diffraction
https://en.wikipedia.org/wiki/Diffraction
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2) Phonons and thermal properties (20 points). 

Calculate the normal mode of a linear monoatomic chain, where the force constant 

between nearest-neighbor atoms is 𝐶, the mass of each atom is 𝑀, and the nearest-

neighbor separation is 𝑎. 

 

a. Show that the dispersion relation is 𝜔(𝑘) = (
4𝐶

𝑀
)

1

2
|𝑠𝑖𝑛 (

𝑘𝑎

2
)| (start from equation 

of motion, F = Ma, consider only the nearest neighbor interactions) (6p). 

 

b. Sketch in the dispersion relation in the first Brillouin zone (2p). 

 

c. Show that the density of modes for this system is 𝐷(𝜔) =
2𝑁

𝜋

1

√𝜔𝑚
2 −𝜔2

 , where 𝑁 is 

the total number of atoms in the chain, and 𝜔𝑚 is the maximum (or Debye) 

frequency (4p). 

 

d. Find the heat capacity of monoatomic chain when 𝑘 → 0 (in this case the 

dispersion relation reduces to 𝜔 = 𝑣𝑘) and ℏ𝜔 ≫ 𝑘𝐵𝑇 (4p). 

 

e. Qualitatively sketch the differences of dispersion relations between mono- and di-

atomic chains (1p). Argue from the point of zone folding that if periodicity of the 

lattice doubles due to either two different masses or two different force constants, 

how will the ω(k) relationship evolve (3p). 

 

Solution 

a.  Consider 1D chain as shown on the picture: 

We assume that the force on ion 𝑠 caused by displacement of ion 𝑠 + 𝑝 is proportional to 

the difference 𝑢𝑠+𝑝 − 𝑢𝑠 of their displacement. Let’s consider only nearest-neighbor 

interactions with 𝑝 = ±1. The total force on 𝑠 from ions 𝑠 ± 1: 

𝐹𝑠 = 𝐶(𝑢𝑠+1 − 𝑢𝑠) + 𝐶(𝑢𝑠−1 − 𝑢𝑠) 

 The equation of motion of an ion 𝑠 is 
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𝑀
𝑑2𝑢𝑠

𝑑𝑡2
= 𝐶(𝑢𝑠+1 + 𝑢𝑠−1 − 2𝑢𝑠) 

Where 𝑀 is the mass of ion, 𝐶 is the force constant. Since the equation is the same at each 𝑠, 

the solution must have the same form at each 𝑠 differing only by a phase factor: 𝑢𝑠(𝑡) = 𝑢 ∙

𝑒𝑖𝑘𝑎𝑠 ∙ 𝑒−𝑖𝜔𝑡. 

−𝜔2𝑀 = 𝐶[𝑒𝑖𝑘𝑎 + 𝑒−𝑖𝑘𝑎 − 2] 

By substitution 2𝑐𝑜𝑠𝑘𝑎 = 𝑒𝑖𝑘𝑎 + 𝑒−𝑖𝑘𝑎 we can obtain 

𝜔2 =
2𝐶

𝑀
(1 − 𝑐𝑜𝑠𝑘𝑎) =

4𝐶

𝑀
𝑠𝑖𝑛2

𝑘𝑎

2
⇒ 𝜔(𝑘) = √

4𝐶

𝑀
|𝑠𝑖𝑛

𝑘𝑎

2
| 

b. Than dispersion relation is: 

 

 

 

c. if the total length of the chain is 𝐿, than the allowed values of 𝑘 are  

−
𝜋

𝑎
< 𝑘 = 𝑛

2𝜋

𝐿
≤

𝜋

𝑎
 

The maximum frequency is then 𝜔𝑚𝑎𝑥 = 2(
𝐶

𝑀
)

1

2
 

The number of states in the interval 𝑑𝑘 is 𝐷(𝑘)𝑑𝑘 = 𝑑𝑘 ∙
𝐿

2𝜋
, so the number of states in the 

interval 𝑑𝜔 is 𝐷(𝜔)𝑑𝜔 = 2𝐷(𝑘) ∙
𝑑𝑘

𝑑𝜔
𝑑𝜔, which gives the DOS 

𝐷(𝜔) =
2𝐿

𝑎𝜋

1

𝜔𝑚𝑎𝑥 |𝑐𝑜𝑠
𝑘𝑎
2 |

=
2𝑁

𝜋
∙

1

√𝜔𝑚𝑎𝑥
2 − 𝜔2
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d. In the linear regime (low 𝜔) DOS can be calculated as in c by taking into an account 

𝜔 = 𝑣𝑘. 𝐷(𝜔) =
𝐿

𝜋𝑣
. Heat capacity is 𝐶 =

𝑑𝑈

𝑑𝑇
, where 𝑈 is the total energy of system: 

𝑈 = ∫ 𝐷(𝜔)
ℏ𝜔

𝑒
ℏ𝜔
𝑘𝐵𝑇 − 1

𝜔𝑚𝑎𝑥

0

𝑑𝜔 

Taking into an account that ℏ𝜔 ≫ 𝑘𝑇 and DOS we can find  

𝑈 =
𝐿

𝜋𝑣
∫ ℏ𝜔 ∙ 𝑒

−
ℏ𝜔
𝑘𝐵𝑇𝑑𝜔

𝜔𝑚𝑎𝑥

0

 

Than heat capacity is 

𝐶 =
𝐿

𝜋𝑣
∫ ℏ𝜔 ∙

𝑑

𝑑𝑇
(𝑒

−
ℏ𝜔
𝑘𝐵𝑇)𝑑𝜔 =

𝜔𝑚𝑎𝑥

0

𝐿

𝜋𝑣
∫ ℏ𝜔 ∙

ℏ𝜔

𝑘𝐵𝑇2
∙ 𝑒

−
ℏ𝜔
𝑘𝐵𝑇𝑑𝜔

𝜔𝑚𝑎𝑥

0

 

By substituting 𝑥 =
ℏ𝜔

𝑘𝐵𝑇
 we can estimate  

𝐶 =
𝐿𝑘𝐵

2𝑇

𝜋𝑣ℏ
∫ 𝑥2𝑒−𝑥𝑑𝑥

∞

0

= 2
𝐿𝑘𝐵

2𝑇

𝜋𝑣ℏ
 

 

e. In the case of diatomic chain we should expect a formation of optical phonon branch. 

Dispersion relation would have a gap at zone boundary.  

 

In case of diatomic 1D chain periodicity is doubled. Lattice constant increases from 𝑎 to 2𝑎, 

this leads to reduced size of 1
st
 BZ from 

2𝜋

𝑎
 to 

𝜋

𝑎
. Part of dispersion relation that belong to 

[−
𝜋

𝑎,
−

𝜋

2𝑎
] and [

𝜋

2𝑎,

𝜋

𝑎
] becomes 2

nd
 BZ. By applying zone folding we can obtain optical 
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branch of dispersion relation of diatomic chain. Gap opened on the new boundary is due to 

Bragg reflection. 

 

3) Free electron and Fermi gas (20 points + 4 bonus points) 

 

Graphene is a monolayer of carbon atoms arranged in a honeycomb lattice 

exhibiting very special electronic properties. Close to the Fermi level, graphene 

shows a linear dispersion relations: 𝐸 = ±ℏ𝑣𝐹𝑘, where 𝑣𝐹 is the Fermi velocity 

and 𝑘 is the wavevector. As shown in the figure below, this dispersion relations has 

two branches as indicated by ± sign. The two branches are degenerate at Fermi 

level 𝐸𝐹, (the energy of the Fermi level was chosen as 𝐸𝐹 = 0). 

 

a. Explain what is Fermi surface (2p) Give an example of Fermi surface of free 

electron gas in 1D, 2D and 3D case (2p). 

b. Derive the expression for the 2D density of states (DOS) 𝐷(𝐸) per unit area of 

graphene (5p). Compare the DOS of graphene with that of a 2D free electron gas 

and explain the origin of the difference  in 𝐷(𝐸) (3p). 

c. Sketch 𝐷(𝐸), 𝑓(𝐸) and 𝐷(𝐸) ∙ 𝑓(𝐸) as a function of 𝐸 for the case of zero 

temperature (3p) and a finite temperature 𝑇 (3p). The Fermi-Dirac distribution is 

given by 𝑓(𝐸) =
1

1+𝑒𝑥𝑝(
𝐸−𝐸𝐹
𝑘𝐵𝑇

)
. 

d. At finite temperature 𝑇  

i. Determine the rough energy range with respect to the Fermi level that 

accommodates most thermally excited electrons (2p). 

ii. Calculate the number of electrons that are thermally excited in this process. 
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(Hint: ∫
𝑥

1+𝑒𝑥 𝑑𝑥 ≈
1

6

1

0
) (4p bonus). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solutions 

 

a. The Fermi surface is the surface of constant energy 𝐸𝐹 in 𝒌 space. The Fermi 

surface separates the unfilled orbitals from the filled orbitals, at absolute zero. The 

electrical properties of the metal are determined by the volume and shape of the 

Fermi surface, because the current is due to changes in the occupancy of states near 

the Fermi surface. Examples of the Fermi surface of free electron gas in 1D, 2D 

and 3D can be section, circle and a sphere with radius 𝐸𝐹 correspondingly. 

b. 𝐸 = ±ℏ𝑣𝐹𝑘,  
𝑑𝐸

𝑑𝑘
= ±ℏ𝑣𝐹,  𝑘 = ±

𝐸

ℏ𝑣𝐹
 

For the positive branch,  

𝐷+(𝐸) =
1

𝐴
|
𝑑𝑁

𝑑𝐸
| =

1

𝐴
|
𝑑𝑁

𝑑𝑘
∙
𝑑𝑘

𝑑𝐸
| =

1

𝐴
|2 ∙

𝐴

2𝜋
∙

𝑘

ℏ𝑣𝐹
| =

|𝐸|

𝜋(ℏ𝑣𝐹)2
 

For the negative branch we can derive the same expression, therefore, 

𝐷(𝐸) =
2|𝐸|

𝜋(ℏ𝑣𝐹)2
 

As you may notice, although graphene is a 2D system it’s DOS is linear as a 

function of energy. This differs from the case of 2D free electron gas, where DOS 

is constant in energy. Such a difference originates from linear dispersion relation of 

graphene 𝐸 = ±ℏ𝑣𝐹𝑘 and quadratic 𝐸 =
ℏ2𝑘2

2𝑚∗
 for the case of free electron gas . 
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c. From top to bottom you can find 𝐷(𝐸), 𝑓(𝐸) and 𝐷(𝐸) ∙ 𝑓(𝐸) for electrons. Left 

and right column describing the cases of 𝑇 = 0 and 𝑇 > 0. Please note that 𝐸𝐹 = 0 

as indicated on dispersion relation graph of graphene and separates filled and 

unfilled Dirac cone.  

 

  

d.  

i. Most thermally excited electrons can be found in a range between 𝐸𝐹 and  

𝐸𝐹 + 𝑘𝐵𝑇. 

ii.  

𝑛 = ∫ 𝐷(𝐸) ∙  𝑓(𝐸)
𝐸𝐹+𝑘𝐵𝑇

𝐸𝐹

𝑑𝐸 =
2

𝜋(ℏ𝑣𝐹)
2
∫

𝐸

1 + exp(
𝐸 − 𝐸𝐹
𝑘𝐵𝑇

)
𝑑𝐸

𝐸𝐹+𝑘𝐵𝑇

𝐸𝐹

 

use 𝑥 =
𝐸−𝐸𝐹

𝑘𝐵𝑇
, then 𝐸 = 𝑘𝐵𝑇 𝑥 + 𝐸𝐹, 𝑑𝐸 = 𝑘𝐵𝑇 𝑑𝑥, the integral becomes: 

2

𝜋(ℏ𝑣𝐹)
2
∫

𝑘𝐵𝑇 𝑥 + 𝐸𝐹

1 + 𝑒𝑥

1

0

𝑘𝐵𝑇 𝑑𝑥 
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=
2𝑘𝐵𝑇 

𝜋(ℏ𝑣𝐹)
2 (𝑘𝐵𝑇∫

𝑥

1 + 𝑒𝑥

1

0

 𝑑𝑥 + 𝜖𝐹 ∫
1

1 + 𝑒𝑥

1

0

 𝑑𝑥) 

≈
(𝑘𝐵𝑇)2

3𝜋(ℏ𝑣𝐹)
2
+

2𝑘𝐵𝑇𝐸𝐹 

𝜋(ℏ𝑣𝐹)
2
∫

𝑒−𝑥

1 + 𝑒−𝑥

1

0

 𝑑𝑥 

≈
(𝑘𝐵𝑇)2

3𝜋(ℏ𝑣𝐹)
2
+ 0.37

2𝑘𝐵𝑇𝐸𝐹 

𝜋(ℏ𝑣𝐹)
2

 

Since 𝐸𝐹 = 0, only the first term is needed. If you take 𝐸𝐹 = 0 from the 

beginning of the calculation, you should also arrive to the first term. By taking 

for example room temperature and 𝑣𝐹 ≈
1

300
𝑐, where 𝑐 is a speed of light we 

can get 

𝑛 ≈
(1.38 ∙ 10−23 ∙ 300)2

3 ∙ 3.14(1.05 ∙ 10−34 ∙ 3 ∙ 1010/300)2
≈

(4.14 ∙ 10−21)2

9.42 ∙ (1.05 ∙ 10−26)2

≈ 1.65 ∙ 1010 𝑐𝑚−2 

 

4)  Magnetism and superconductivity (20 points + 3 bonus points) 

 

a. Consider an ion that has an outer shell of 3𝑑3. Apply the Hund’s rules to find the 

ground state of this ion (3p). Write your answer in atomic notation (2p). 

b. Considering the spin paramagnetism in metals, what happens to the energy band 

when metal is subjected to magnetic field 𝑩? Draw corresponding energy diagram 

(3p). Calculate the magnetization M of such a system (𝑁 electrons) in terms of 𝜇𝐵 

(3p). 

c. Some materials undergo superconducting transition when cooled below the 

superconducting transition temperature. Qualitatively describe the differences 

between a superconductor and a perfect conductor when they are placed in the 

magnetic field (4 points). 

d. An organic molecule has a triplet (𝑆 = 1) excited states above a singlet (𝑆 = 0) 

ground state with an energy gap Δ.  

i. Draw the energy diagram of this molecule before and after applying magnetic 

field 𝑩, and label the energy of each level (2p). 

ii. Find the expectation value of the magnetic moment 〈𝜇〉 of this molecule in a 

magnetic field 𝑩 (3p). 

iii. Show that for a system with 𝑁 of such molecules in a volume 𝑉, the 

susceptibility at the limit of high temperature is independent of Δ (Hint: use 

the canonical partition function 𝑍 = ∑ 𝑒
−

𝐸𝑖
𝑘𝐵𝑇

𝑖 ) (3p bonus).  
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Solutions 

a. 𝐿𝑍: 2, 1, 0, −1,−2, 𝑆 =  3/2 → 2𝑆 + 1 = 4, 𝐿 =  3 → 𝐹, 𝐽 = |𝐿 − 𝑆| = 3/2 The 

ground state is  𝐹3/2 
4 . 

b. Spin up electrons (parallel to field) are shifted opposite to spin down electrons 

(antiparralel to 𝐵 field), and the energy shift is determined by Zeeman energy 

Δ𝐸 = ±𝜇𝐵𝐵. Such a shift cause a 

net magnetization of a metal, 

since the total amount of aligned 

spins is larger than the amount of 

antiparallel spins.  

𝑀 = 𝜇𝐵(𝑁↑ − 𝑁↓) = 𝜇𝐵

1

2
𝐷(𝐸𝐹)2𝜇𝐵𝐵 

This is a way to measure the 

density of states.  

 

c. Perfect conductor is a material with zero resistance. Suppose this property appears 

below some critical temperature 𝑇𝐶. Above 𝑇𝐶 it behaves like a normal metal. 

Inside a perfect conductor 𝐸⃗ = 0⃗  , we have 
𝜕𝐵⃗ 

𝜕𝑡
= 0. Magnetic field is “frozen”. 

Therefore, if initially there was no magnetic field applied, but it was applied on the 

later stage (below 𝑇𝐶) magnetic field will not penetrate inside. If initially there was 

magnetic field 𝐵𝑎 applied and cooled below 𝑇𝐶 it will remain to have 𝐵𝑎 inside 

even after removal of external field (since 
𝜕𝐵⃗ 

𝜕𝑡
= 0). 

In contrast to perfect conductor there is a superconductor, which resistance also 

goes to 0 below critical temperature 𝑇𝐶. In superconductor Meissner effect takes 

place when it’s subjected to magnetic field. No matter how the sample was coold, 

magnetic field is expelled from the interior of superconductor. Only zero resistance 

cannot explain such a behavior as you see for the case of perfect conductor. The 

Meissner effect suggest that perfect diamagnetism is an essential property of 

superconductor. 
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d.  

i. Energy diagram of molecule before and after magnetic field is applied. 

 

 

ii. 〈𝜇〉 can be found by taking into an account population expectations of spin up 

and spin down states as following  

〈𝜇〉 = 𝜇𝐵
𝑒

−
(𝛥−𝜇𝐵𝐵)

𝑘𝐵𝑇 −𝑒
−

(𝛥+𝜇𝐵𝐵)
𝑘𝐵𝑇

𝑍
   

𝑍 = 1 + 𝑒
−

(𝛥−𝜇𝐵𝐵)

𝑘𝐵𝑇 + 𝑒
−

𝛥

𝑘𝐵𝑇 + 𝑒
−

(𝛥+𝜇𝐵𝐵)

𝑘𝐵𝑇 . 
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iii. At high temperatures 𝑒
−

𝛥

𝑘𝐵𝑇 → 1 and 

〈𝜇〉 → 𝜇𝐵 ∙
(1 +

𝜇𝐵𝐵
𝑘𝐵𝑇

− ⋯) − (1 −
𝜇𝐵𝐵
𝑘𝐵𝑇

+ ⋯)

1 + 1 + (1 +
𝜇𝐵𝐵
𝑘𝐵𝑇

− ⋯) + (1 −
𝜇𝐵𝐵
𝑘𝐵𝑇

+ ⋯)
=

𝜇𝐵
2𝐵

2𝑘𝐵𝑇
 

𝜒 =
𝑁𝜇𝐵

2

2𝑉𝑘𝐵𝑇
 

 

5) General concepts (20 points + 3 bonus points) 

 

a. Name at least three typical crystalline bindings (3p) and sketch the general 

interatomic potential as a function of the distance between the two atoms (1p). 

b. The resistivity of metal is highly dependent on scattering processes. Which 

scattering processes take place in a metal (2p)? Sketch the corresponding resistivity 

as a function of temperature and mark the different temperature regions (4p). 

c. Discuss the concept of effective mass and give a corresponding expression (3p). 

Explain what it physically means when the effective mass of an electron is negative 

(2p bonus).  

d. Sketch the energy diagram of a typical p and n doped semiconductors before and 

after placing them into contact (4p). Sketch the 𝐼 − 𝑉 dependence of a typical p-n 

junction when forward or reverse bias is applied across the junction (1p bonus). 

e. Use the diagram you drew in question d to explain how light emitting diode works 

(3p).  

 

 

𝐵 ≠ 0 

1 

𝑒
−
(𝛥+𝜇𝐵𝐵)
𝑘𝐵𝑇  

𝑒
−

𝛥
𝑘𝐵𝑇  

𝑒
−
(𝛥−𝜇𝐵𝐵)
𝑘𝐵𝑇  
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Solutions: 

a. There are four types of crystalline bindings, van der Waals, ionic, metallic, 

covalent. Also see Kittel P48. You get the 2 points for correctly naming at least two 

of the four. 

The interatomic potential-

distance relation is shown in the 

figure, here we are looking at: 

the general shape of the curve 

(0.5 p), the negative potential 

minimum at bond length (0.5 

p), the curvature for the 

attractive potential part (0.5 p), 

and the limits at 0 and infinite 

distance (0.5 p). 

 

 

 

 

 

b. See Kittel P148-P150. The electrical resistivity of most metals is dominated at 

room temperature (300K) by collisions of the conduction electrons with lattice 

phonons (1 p) and at low temperature (4K) by collision with impurity (1 p) atoms 

and mechanical imperfections in the lattice. 

The resistance can be calculated as following, 

𝜌 =
𝑚

𝑛𝑒2𝜏
=

𝑚

𝑛𝑒2
(

1

𝜏𝑝ℎ𝑜𝑛𝑜𝑛
+

1

𝜏𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦
) 

1

𝜏𝑝ℎ𝑜𝑛𝑜𝑛
∝ 𝑛𝑝ℎ𝑜𝑛𝑜𝑛,

1

𝜏𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦
∝ 𝑛𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 

 

𝑛𝑝ℎ𝑜𝑛𝑜𝑛 = ∫ 𝐷(𝜔)𝑓(𝜔)𝑑𝜔
𝜔𝐷

0

 

The impurity concentration is usually very small and does not depend on 

temperature, therefore for most cases it is the phonons that dominate the process. 

Only at very low temperature when the phonon concentration is extremely low, the 

impurity scattering dominates. 

At high temperature, 𝑛𝑝ℎ𝑜𝑛𝑜𝑛 ∝ 𝑇, so 𝜌 ∝ 𝑇;     (0.5  p) 

At low temperature, 𝑛𝑝ℎ𝑜𝑛𝑜𝑛 ∝ 𝑇3, so 𝜌 ∝ 𝑇3    (0.5  p) 
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At very low temperature, 𝑛𝑝ℎ𝑜𝑛𝑜𝑛 = 𝑐𝑜𝑛𝑠𝑡., therefore  𝜌 = 𝑐𝑜𝑛𝑠𝑡.  (1 p) 

See the plot below.        (2 p) 

 

You don’t have to write down any formula for this questions. We only look at if 

you remember the temperature dependence of phonon concentration, and if you 

realize the dominance of impurity scattering at very low temperature.  

 

c. The expression of effective mass is, (2 p) 

𝑚∗ =
ℏ2

𝑑2𝐸
𝑑𝑘2

 

Or 

1

𝑚∗
=

1

ℏ2

𝑑2𝐸

𝑑𝑘2
 

This concept is created for to describe the movement of nearly-free electrons in 

crystals, as analogous to the mass of a free electron. It shows how and how much 

an electron in a crystal will react to an external field. The fact that the effective 

mass is different from a free electron mass is due to the interaction of the electron 

wave and the lattice. You get 1 point for correctly introduce the concept, it doesn’t 

have to be the same as stated above.   

For the concept of negative effective mass, you can explain in the language of 

momentum transfer between the electrons and the lattice, for this please refer to 

Kittel P199, and Figure 11 on that page. You can also think in the language of the 

group velocity of the electron waves. From equation 27 on P198, we see that a 

negative effective mass means that, when applied an positive external field (force 

F), the group velocity of the wave decelerates. In this process each single electron 

is still accelerated by the field, however due to the interaction of the periodic 

lattice, the group velocity appear to be decelerating. You can compare this to a 

rotating wheel, when the rotation accelerates, it could happen that for an observer, 

the wheel appears to be decelerating, or even rotating backwards.  

You get the 2 bonus points for using either way to explain the negative effective 

mass.  
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d. For this question we are looking at: 

Before putting them together, the Fermi level for each case (2 p), after putting them 

together, the alignment of the Fermi level (1 p) and the band bending (1 p). Figures 

as shown below: 

 

       

  Before     After (Equilibrium)  

For a p-n junction the I-V curve is shown 

below, you get 1 bonus point for showing 

the shape of the curve. You do not have to 

show the breakdown at the high reverse 

bias. 

 

 

 

 

 

 

 

e. See Kittel P511. A light emitting diode works by applying an electric field to a p-n 

junction to push both electrons and holes to the p-n interface so that they can 

recombine and emit photons. As shown in the figure below, the p-type side is 

applied positive bias, effectively lowering its Fermi level. Whereas at the n-type 

side the Fermi level is raised by applying a negative field. The energy difference 

between the Fermi levels is now eV, where V is the applied voltage. The change of 

the Fermi levels changes the balance between drift and diffusive electrons and now 
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electrons and holes can both move across the junction, therefore recombine and 

emit photons. You get 2 points for explaining the charge recombination process and 

1 point for mentioning the shift of Fermi levels.  

 

 

 


